Typical Electrical Engineering Problems

A noisy binary communication channel

The channel can be twisted pair, coaxial cable, fiber optic cable,
or wireless medium.

The channel introduces noise and thereby bit errors.

Station A

h(n)

X(n)

A

Channel

y(n)

00110001010...

\ 4

Station B

00100001010...
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Typical Electrical Engineering Problems

Signal detection

* Desired target signal is buried in noise.
X(t) = A(t)cos(at + ¢(1)) + N(t)

* Determine the presence or absence of the desired signal.
* Filter the signal out of noise.

* Demodulate the signal.
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Typical Electrical Engineering Problems

Networks

In large computer networks, there are limited resources
(e.g., bandwidth, routers, switches, printers and other devices) that
need to be shared by the users.

— User jobs/packets are queued and assigned service based
on predefined criteria.

— Demand is uncertain and service time is also uncertain.

— Delay from the time the service is requested to the time it 1s
completed.

Telephone networks, multiuser computer networks, and other
communication networks.
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Our Interest and Goals

Study tools to characterize the uncertainty

- Probability theory, random variables, random processes
Apply the tools to characterize non-deterministic signals

- Random events, random signals
Analyze systems processing non-deterministic signals

- LTI systems with random 1nputs
- Communication channels with noise
- Communication networks with uncertain delays
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Basics of Probability

e > Probability Assignment

l

Random R Sample , Events and

Experiment Space Their Probabilities

T

Define Events

Outcome

* In arandom experiment, the outcome is uncertain
— Physical experiment
— Abstraction
* The entire collection of outcomes is the sample space, S
— Universal event or certain event
* An event consists of a single or a group of outcomes.
— Events are user defined: A, B, ...
* A measure of likelithood of occurrence of an event, A
— Probability of A or Pr[A]
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Example:

Roll a die once. All faces are equally likely.
e Sample space [discrete sample space]
S ={1,2,3,4,5,6}
* Define events:
A, = {Odd numbered face} = {1,3,5}
A, = {Face value <3} = {1,2}
A; = {Even numbered face value} = {2,4,6}
* Probability assignment:
Pr[A,]=3/6=1/2
Pr[A,]=2/6=1/3
Pr[A;]=3/6=1/2
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Continuous Sample Space

Continuous sample space <=> Continuous magnitude signals

, -5V to +5V
Radio
> s(b)

Receiver

* Output of the radio receiver is measured at t = t;. The dynamic
range of the receiver output is =5V to +5V

S={s -5<s<+5}
* A continuous sample space has uncountably infinite values or outcomes
— Scould take values like 4.9326784531432677...

* Examples of events and probability assignments:

A, ={s: =2.5<s<2.5}, Pr[A,]1=0.50

A,={s: -1<s<1}, Pr[A,]=0.20
A, = {s: s = 2.3+ AX}, AlimOPr[A3]=O
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Discrete Sample Space

Discrete sample space <=> Discrete valued signals

s(t) ————>

-5V to +5V

8-bit
ADC

—> s[n]

* QOutput of an 8-bit ADC contains only 28 =256 values

S = {-5,-4.9609375, ..., -0.0390625,0,0.0390625, ..., 4.9609375} or
S={-128,-127,...,—-1,0, 1, ..., 127}: decimal equivalent of 2’s

complement representation

* A discrete sample space has finite or countably infinite values or

outcomes

— In this case, we have 256 values or outcomes (finite)
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Two Dimensional Sample Space

Roll two dice

[discrete sample space]

S = {(1,)): (1,1), (1,2), (1,3), ..., (4,3), ..., (6,4), (6,5), (6,6)}

6

O

O

©)

©)

O

O
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1,2-10

Events and Event Operations

A, Ay A,
A +A,
Al A2

Certain event

Null event

User defined events

Union operation (A; U A,)
Intersection operation (A; N A,)
Complement operation
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Example:

Consider a sample space represented by S = {1,2,3,4,5,6}

Let A,= {1,3,5}, A,=1{1,2}, and A,= {2,4,6} be the user defined
events

- AC=({1,3,5}) © = {246} = A,

— A, +A;={1,2,4,6}

— A, +A;=1{1,2,34,5,6} =S

- A A =11}, A A= {2} S={1,23,4,5,6)

~AA=0

~ A FO=A,

~ A, 0=0 A=
{2, 4, 6}
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Postulatesfor the Algebra of Events

« AJAC=0
« A S=A,
* (A9 C=A,

« A+t A,=A+A,

* AT (A TAY= (AT Ay T A;
* AT (AT A= A A+ AA,

* (AJA) “=ACHAS

Mutual exclusion
Inclusion

Double complement
Commutative law
Associative law
Distributive law

De Morgan’s law
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Other Identities

_gC=y
— A, +0=A, Inclusion

- AA=A A Commutative law
— A (A Ay)=(A A, A, Associative law

- A +(A, A)=(A;+A,)A; +A;) Dastributive law
— (A +A,))C=ACAL De Morgan’s law
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Finite Unions and | nter sections

These are included in the algebra.

A=A + A+ A+ ..+ Ay

" )= ECZ

A = A A A, ... A,

=1

| nfinite Unions and I nter sections
If they are included, the algebra of events is called a Sigma Algebra.

A=A + A + A+ ..

DY Ecg

Il
[S—

A = A A, A, ..
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Mutually Exclusive and Collectively Exhaustive Sets
of Events

Mutually exclusive: Ac A, =0 K # |

I
0p

Collectively exhaustive: U A j
j

Working Definition of the Sample Space

THE SAMPLE SPACE ISREPRESENTED BY THE FINEST
GRAIN, MUTUALLY EXCLUSIVE, COLLECTIVELY
EXHAUSTIVE SET OF OUTCOMESFOR AN EXPERIMENT.
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The Axioms of Probability

L. Pr[A 120 for any event
II. Pr[S]=1
II(a). If AA, =0, then Pr[A, +A,]=Pr[A, ]+Pr[A,]

II(b). IfA,A, =0fori# j, then Pr{UAi} = Pr[A]
i=1

1=1
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Some Corollaries

1. PrA°]=1-PfA] (i, iii

2 0<Pr[A]<1 (i, i, iii)

3. If A cA,, then PrfA]< PrA,] (i, iii)
4. Pr0]=0  (ii, iii

5 If AA,=0, then PrAA,]=0

6 Pr[A, +A,]=Pr{A ]+PrA,]-Pr[A A, ]

-® ap

1,2-17 © M. Tummala & C. W. Therrien 2004



ThePrinciple of Total Probability

Let A, A,, ..., A, be a set of mutually exclusive and collectively
exhaustive events:

A, A.=0 K # |

|

LrJ A; = S then Zn:Pr[Aj]zl

J=1 j=1

Now let B be any event in S. Then,

Pr[B]=Pr[BA,]+Pr[BA, ]+ / M
.-+ Pr[BA ]
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| ndependence of Events

Two events A, and A, are said to be statistically independent

if and only 1f
Pr{AA,] = Pr[A;] Pr[A,]
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System Redliability Calculations
Parallel Connection of switches

Si

Y

Y

S

Define: A, = {S, fails}, Pr[A,]=p, Pr[Af]=1-p=q
A, = {8, failsy,  Pr[A,]=p, Pr[A,]=1-p=q

F = {no connection between x and y} = A, A,

The probability that the connection fails:
Pr[F] = Pr[A,A,] = P1[A,] Pr[A,] A, and A, are independent
= p>
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System Redliability Calculations
Series connection of switches

S Y

X e > S

A 4

Assume that switch failures are statistically independent; failure
results in an open connection.

F = {no connection between x and y} = A+ A,

The probability that the connection fails:
Pr[F] =Pr[A,+ A,] = Pr[A,] + Pr[A,] — Pr[AA,]
= Pr[A,] + Pr[A,] — Pr[A,] Pr[A,] A, and A, are independent
=p+p-p*=2p-p’
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Example:

Consider a simple switching network as follows:
Sl S2

o S S4
X S3 ]_‘/.—’ y
o o

Define: A, = {switch S, fails}, k=1,2,3,4 Pr[A,]=p
(a) Find the probability that the path between x and y 1s established.

Let F = {no connection between x and y} = (A, + A))A; + A,

The probability of path failure 1s given by
Pr[F] =Pr[(A, + A))A; + A, ] =Pr[A/A; + ALA;] + Pr[A,] — Pr[A | A;A+ AJALA ]
= Pr[A,] + Pr[A,A;] + Pr{A,A,] — Pr[A,ALA,]
— Pr[A,AA,] - Pr[AALA,] + Pr{A, A,AA,]
=p +2p? - 3p? + p*
The desired probability is then given by
Pr[path established] =1 - Pr[F] =1 - p - 2p? + 3p3 - p*
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(b) Compute the desired probability as a function of p:

Pr[path established] =1 - Pr[F]=1-p - 2p2 + 3p3 - p4

p 1 — Pr|F]

0.1 0.8829

0.01 0.98980299
0.001  0.998998002999
0.0001 0.999899980003
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Repeated I ndependent Trials (Bernoulli Trials)

A random experiment, E, consists of several sub-experiments
or trials, E;:
— All sub-experiments have the same sample space, S..
— Events from all sub-experiments are mutually independent:
Pr[A A A;...A, | = Pr[A,]|Pr[ A, |Pr[A,]...P1[A,],
where A. 1s an event {from S..
— The sample space of E is:
S=S, XS, XS;X...xXS,

1,2-24 © M. Tummala & C. W. Therrien 2004



Counting M ethods and Probability
The assignment of probability is given by

Number of outcomes in Event A,

Pr[A, | = ;
Number of outcomes of experiment

Theruleof products:
Consider an experiment with N outcomes; repeat  times

Total number of outcomes is given by

Nr”:n.n ..... N=n

or in a general case

1,2-25 © M. Tummala & C. W. Therrien 2004



1,2-26

Example:

Roll a die 4 times sequentially. The total number of outcomes is
N; =6-6-6-6=6"=1296

Example:

Form 5-letter words using 26 English alphabet characters. Characters
can be repeated, and the words so formed do not have to be meaningful.

N =26 =11,881,376
Example:

Construct variable names of length 3 using a letter, a number, and a letter
(e.g., A2C).

NP =26-10-26

© M. Tummala & C. W. Th
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PERMUTATIONS (products without replacement)

Select r objects from among a given set of n distinct objects

where we pay attention to the order in which the r objects

are selected.

P"=n(n-1)(n-2)---(n—r +1)
_n
(n=n)!’

for r <n

Special case: Forr = n: P"=n!
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Example:

Form 5-letter words using the English alphabet. The characters

cannot be repeated, and the words do not have to be meaningful.

The total number of words that can be formed is:

26
(26—5)!
26

= on =26-25-24-23-22=7,893,600

26
K
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COMBINATIONS (without replacement, without order)

Select r objects from among a given set of n distinct objects
where we pay no attention to the order in which the r objects

are selected.

Cn_n(n—l)---(n—r+1)_ n! n
(=D =2)---1) rin-r) \r

Binomial coefficient “n chooser”
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Example:
Consider 5 workstations having equal capabilities: {a, b, c, d, e}

* Permutations: Select two workstations where one will be a server
and the other a graphics workstation. The possible selections are:

ab ba ac ca ad da ae ea bc cb bd db be eb cd dc ce
ec de ed

s 9

T TR “ab # ba”

* Combinations: Select two workstations where both will be used
as graphics workstations. The possible selections are:

ab ac ad ae bc bd be cd ce de

! .
C) = R, 10 “ab =ba”
A(5-2)! 2
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Example:

We plan to buy 5 personal computers. The computer store has a stock of 10
foreign made PCs and 15 US made PCs that meet our specifications.

(a) Assuming that the 5 computers are randomly chosen from this lot, what
1s the probability that exactly 3 US made computers are selected?

— The sample space 1s given by
S = {combinations of r = 5 chosen from n= 25}

> 51(25=5)!

— The desired event A = {exactly 3 of the 5 selected are US made}

o 151 10!

N, =ClCl® =
31(15-3)! 21(10—2)!

— The probability that we have 3 US made computers is
[Hyper geometric distribution]

15/~10 ] ] ] _ ]
N, _CICY L ISL 10 SEOSS e,
N, C>® 31 (15-3)! 2! (10-2)! 25!
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Example (continued):

(b) Assuming that the 5 computers are randomly chosen from this lot,
what is the probability that at least 1 is foreign made?

— Let event B = {none of the 5 selected computers is foreign made}

— The desired event C = {one or more of the 5 are foreign made}
— Since B¢ = C, we can write Pr[C] = 1 — Pr[B]

15/~10 ] ] ' _ '
ppy< Ne JCECY _ 15U 10U SL @SS o o
N, C® 5! (15-5)! 0! (10-0)! 25!

Pr{C]=1-Pr[B]=0.94348

© M. Tummala & C. W. Th

errien 2004



1,2-33

Example:

Consider a box of 25 modem chips: 5 of them are known to be defective.
Select 6 from the box at random and test them. What is the probability
that exactly 2 are defective?

— Sample Space: S = {combinations of r = 6 chosen from n= 25}
— Event: A = {exactly 2 of the 6 selected chips are defective}
— The number of outcomes in S is given by:

25!
6/(25—6)!

— For the selected 6 chips, we are interested in the case, where 2 are
defective (i.e., they are from the 5 defective chips in the box) and
4 are non-defective (i.e., they are from the 20 non-defective chips
in the box).

N, = C =
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Example (continued):

— The number of outcomes in A is given by:

120!
N, =CiCr = >0
21(5—2)! 41(20—4)!

— The probability that exactly 2 of the 6 selected chips are defective is
[Hyper geometric distribution]

520
S 6
51 20! 6! (25—6)!

T21 (5-2)1 4! (20—4)! 25!

= (.2736.
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Conditional Probability
Probability of occurrence of one event (say, A,) subject to the

knowledge that another event (say, A,) has occurred.

Pr[A, A,]
R W ap

Pr[A, | A,] is read as “probability of A, given A, ”

S

If A, and A, are independent, then

Pr[A, A,]_ Pr[A |Pr[A,]
Pr[A, ] B Pr[A,]

Pr[A A, |= = Pr[A,]
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Example:

Consider a sequence of 3 binary numbers (occurring randomly).
Sample space: S = {000, 001, 010, 011, 100, 101, 110, 111}

What 1s the probability that there are more 1°s than 0’s given that
the first
bitisa I.

* Let us define two events:
A, = {more 1’s than 0’s} = {011, 101, 110, 111}
A, = {the first bitisa 1} = {100, 101, 110, 111}
® Their intersection:
AA,= {101, 110, 111}

© M. Tummala & C. W. Therrien 2004



Example cont’d: 05 Sample Space

111
110
101
100
011
010
001
000

Tree diagram

* All 8 events in the sample space have probability 1/8, therefore

Pr[Az]zg and Pr[AlAz]:g

* The conditional probability is obtained as follows:
Pr[A, A,] 3/8 3

N S TR
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ThePrinciple of Total Probability Revisited

Let A, A,, ..., A, be mutually exclusive and collectively
exhaustive events. Let B be an event in S.

Then,
Pr[B]=Pr[BA, ]+ Pr[BA,]+...+ Pr[BA ]
=Pr[B |A, | Pr{A]+...+Pr|B |A | PrA]

:Zn:Pr[B A | Pr{A;]
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Example: Binary Communication Channel

Transmitter Channel > Receiver

Pr[04/05] = 0.95
Og ® > Og

Pr[0,/14] = 0.10
Pr[1,] 05] = 0.05

Pr[14/14] = 0.90

© M. Tummala & C. W. Th
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Exam DI econt’d. conditlional

T error

Pr[error |14]=Pr[0; |1]=0.10
Pr[error |04]=Pr[l;|04]=10.05

Pr[error] = Pr[error | 1] Pr[ls ]+ Pr[error | O] Pr[O4]
=0.10-0.50+0.05-0.50=0.075
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More on Conditional Probability

From the definition of conditional probability, we can write

Pr[AI\Az]zprL‘i‘[lAz‘A]‘z] or Pr[A, A,]=Pr[A|A,] Pr[A,]
Pr[Az‘AJ:PrEﬁEAﬁZ] or Pr[A, A,]=Pr[A,[A,] Pr[A,]

Pr[A|A, | Pr{A,1=Pr| A,|A | Pr[A]]

This can be written as

Pr[A|A, | Pr[A,]
Pr[A,]

Pr|A,|A, |=

1,2-41 © M. Tummala & C. W. Therrien 2004



Bayes Rule

Let A, A,, ..., A, be a set of mutually exclusive, collective
exhaustive events. Then,
Pr[B|A,]Pr[A ]

Pr[B]

Pr| A, |B|=
Or, applying the Principle of Total Probability

Pr[B|A ] Pr[A|]

S Pr[B| A, JPI[A,]

Pr|A,|B|=

This 1s called Bayes’ Rule.
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Example: Binary Communication Channel

Transmitter > Recelver

Pr[0,/04] = 0.95

Pr[0<] = 0.
rl0s1=0.5 Pr[0g|15] = 0.10

Pr[1¢] Og] = 0.05

Pr[14]=0.5

Pr[1g/14] = 0.90

Determine the inverse probability, P[1¢ |1z].
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Example cont’d.

Determine the inverse probability, P[1¢ |1;]:

Pr{14/ls]1Pr[ 1]
Pr1¢]
Pr{14/ls]Pr[ 1]
Pr[lg |1g]Pr[1g]+ Pr[l1 |Og]Pr[Og]
045
©0.45+0.025

Priig| 1, )=

=0.9474
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Example:

Consider 3 boxes of ICs:
Box 1 contains 1500 ICs and 10% of them are defective;
Box 2 contains 2000 ICs and 20% of them are defective; and
Box 3 contains 3000 ICs and 16% of them are defective.

Select 1 of the 3 boxes at random and choose an IC from

that box at random.

(a) What 1s the probability that this IC 1s defective?

1,2-45 © M. Tummala & C. W. Therrien 2004



(a) What 1s the probability that this IC 1s defective?

Define: A = “selected IC is defective” ,
A B.=“IC 1s from box 1”

i_

* By the principle of total probability, we can write

Pr[A]=Pr| A|B, |Pr[B,]+Pr| A|B, |Pr[B,]+Pr| A|B, | Pr[B,]

:0.10-%+O.20-%+0.16-l=0'3ﬁ:0.1533

3
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(b) Suppose that the selected IC 1s found to be defective.
What is the probability that this IC came from box #3?

By Bayes’ theorem, we can write

Pr[A | B;]Pr[B;]

Pr| B.,| A |=
[3‘ } Pr[A]
1
0.16-—
- 3 016
~ 7046 _0.46_0'3478
3

(¢) Suppose all IC’s are thoroughly mixed in one box and
an IC 1s selected at random from the box. What 1s the
probability that the IC 1s defective?
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Basic Information Theory

Given an event A and its probability Pr[A], information associated
with A is given by

I[A]=log, =—log, Pr[A],

Pr[A]

where X is the base of the logarithm:
if X = 2, the units of information are bits;
X =10, the units are hartleys;
and X = e, the units are nats.

Note the identity: log, b = X means that a* = b.
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Example:

Consider two events: A, and A, with corresponding probabilities
of occurrence of 0.125 and 0.875, respectively.

The information associated with these events:

I[A,] = —log, (0.125) =3 bits and I[A,] = —log, (0.875) = 0.1925 bits.

Entropy

Given a set of independent events that are mutually exclusive and
collectively exhaustive, we can define the average information
associated with the random experiment as

H =) Pr[A;]-1[A;]=-) Pr[A,]-log, Pr[A].

© M. Tummala & C. W. Th
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Example:

Consider asequence 1 232345456789890.

We estimate the probability of occurrence of each symbol as follows:

Pr[1] = Pr[6] = Pr[7] = Pr[0] = 1/16
Pr[2] = Pr[3] = Pr[4] = Pr[5] = Pr[8] = Pr[9] = 2/16.

The entropy of this sequence i1s

H =-) Pr[A,]-log, Pr[A;]=3.25 bits.

© M. Tummala & C. W. Th
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Shannon-Fano Code

* Messages are composed of an alphabet in which the frequency of
occurrence of each letter is a probabilistic phenomenon.

— For transmission purposes the messages are compressed such
that the code length of a letter is inversely proportional to its
frequency of occurrence (e.g., think of the Morse code).

— Since the letters are transmitted sequentially, no short
codeword be part of the start of a longer codeword for unique
decodability.

* Shannon-Fano Algorithm:

— Arrange letters in a descending order of their probabilities by
breaking any ties arbitrarily.

— Starting at the top, partition the letters into two equi-probable
subgroups (as closely as possible): assign 0 to the first subgroup
and 1 to the second.

— Continue partitioning the subgroups until all letters are exhausted:
after each partition, assign a 0 to the first group and a 1 to the
second and append the newly assigned bits to the previously assigned
bits.
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Example

Given a text message “ELECTRICAL ENGINEERING,” determine the

relative probabilities of the letters in the message and find the Shannon-
Fano code for each letter. Ignore the space character.

Since there are 21 letters in the message, we have the following
probabilities:

Letters: {E,L,C, T, R, I, A, N, G}

Probabilities: {5/21, 2/21, 2/21, 1/21, 2/21, 3/21, 1/21, 3/21, 2/21}

E 5/21

0

Code assignment:

[ 321 O @O@

N 3/21 O® 1

L 221 1 0

C 221 1 1 @O

R 2/21 1 @1 IQD
G221 1 0 @

T 121 1 1 0@
A 121 1 1 1

Codeword Length

00
010
011
100
1010
1011

110
1110
1111

2

A~ b~ LW B B W W W
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The Binomial Probability Law
Consider a sequence of n binary values:
Pr[1]=p,Pr[0]=1-p=q.
Define: A = {occurrence of r 1’s in a sequence of length n}
The number of ways r 1’s can occur in a sequence of length n
is given by the binomial coefficient, C":
— Note that each of these arrangements hasr I’sand n —r 0’s.

— The probability of occurrence of such an arrangement 1s then
given

by pr qn-r.

N
The probability of the desired event: Pr[A] = ( r j p'g"’

© M. Tummala & C. W. The
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Example 1.
Consider a modem connection with a channel bit error rate

p = 1072. Given that the data are sent as packets of 100 bits,
what 1s the probability that (a) 1 bit 1s in error and (b) 3 bits

are 1n error?

. 100 | %
(a) Pr[1bit in error | = | 0.01" -0.99” =0.3697

100

(b) Pr[3 bits in error ] = ( X jo.oﬁ 10.99°7 = 0.060999
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Example 2:
Consider a communication system with a channel bit error rate,

p = 1073. The transmitter sends each bit three times, and the
receiver takes a majority poll of the received bits to determine
the received bit. What 1s the probability of bit error now?
(a) Each transmission is a Bernoulli trial with n = 3.

Define: A = {2 or more bit errors in 3 trials}

Pr[error] = Pr[A]=Pr[r =2 2]

—321 +33
—2p(—p)3p

=3x10°(1=10")+107° =3x10"°
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Example 2 cont’d:

(b) Consider 5 bits (n =5).
Define: A = {3 or more bit errors 1n 5 trials}

Pr[error] = Pr[A]=Pr[r = 3]

_[° (1= 2+5 (1 - +5 >
—3p( P) 4p( p)Sp

=9.985%x107



Example:
Consider a sequence of 10 binary digits. Let Pr[1] = 0.52.

(a) What is the probability of obtaining 8 or more 1’°s?
Define: A = {8 or more 1’s in a sequence of 10 bits}

10 . (10 9 10 y
Pr{A]=| |-0.52°.048 +| [-0.52°-0.48+| |-0.52
8 9 10
=45.0.52°-0.48" +10-0.52°-0.48+0.52" = 0.0702161458426

(b) What 1s the probability of obtaining exactly six 1’s?
Define: A = {exactly six 1’s in a sequence of 10 bits}

10
Pr[A]= [ 6 j-O.SZ6 .0.48" =210-0.52°-0.48" = 0.220396303407
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The Geometric Probability Law

Consider a sub-experiment. Let A be the desired event.
Let Pr[A]=p, Pr[A“]=1-p.

Repeat the sub-experiment until A occurs.

* Suppose that A occurs in the k™ trial:

AC A€ A€ A€ . A¢ A
1 2 3 4 . k-1 k
: Other than desired . Desired

The probability that A occurs in the k™ trial is:

Pr[A occurs in k™ trial] = gl—p)(l—p)(l—p)(l—p)--- (l—p) p

k—1 uneventful trials

=1-p“" p
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Example:

In a computer to computer modem link, the receiving computer

has an error detection algorithm. If it detects a bit error, it
requests retransmission of the packet. For simplicity, assume
that the packet length 1s 8 bits. Let the probability of channel

error be Pr[error] = 0.1.

(a) Determine the probability that the error occurs after the
5% bit in a packet.
Pr[k > 5]= Pr[k = 6]+ Pr[k = 7]+ Pr[k = §]
=0.9°-0.1+0.9°-0.1+0.9"-0.1
= 0.16002279
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Example cont’d:

(b) What 1s the probability that a packet 1s retransmitted 2 times?

* A packet 1s retransmitted once if at least one of the 8 bits
1S 1n error.
It 1s retransmitted again if at least one of the retransmitted

& bits 1s 1n error.
8

Pr[1 retransmission]=Pr[k > 1] = Z Pr[k=1]1=0.5695

=1

Pr[2 retransmissions] = (Pr[l retransmission])2 =0.3244
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